Respuesta :
We have been given that:
Vector [tex]\vec{a}=4\hat i-2\hat j[/tex] and [tex]\vec{b}=-3\hat i+5\hat j[/tex].
Component form of a vector implies to write the vector with each individual components.
Now, our vector [tex]\vec e[/tex] is given by
[tex]\vec e =2\vec a+3\vec b[/tex]
Now, [tex]2 \vec a=2(4\hat i- 2 \hat j)=8 \hat i -4 \hat j[/tex]
and [tex]3 \vec b= 3(-3 \hat i +5\hat j)=-9 \hat i + 15\hat j[/tex]
Plugging the values of [tex]2 \vec a[/tex] and [tex]3\vec b[/tex], we get:
[tex]\vec e = 8 \hat i-4 \hat j-9 \hat i + 15 \hat j=- \hat i+11 \hat j[/tex]
So, the vector 'e' in its component form is given as:
[tex]\vec e= -\hat i+11\hat j[/tex]
Vector is an element of a vector space. The value of vector e is -i+11j.
What is Vector?
A vector is an element of a vector space.
Given to us
[tex]\vec a = 4i - 2j[/tex]
[tex]\vec b = 3i + 5j[/tex]
[tex]\vec e = 2a + 3b[/tex]
As given to us that e=2a+3b, substitute the value of a and b, we will get,
[tex]\vec e = 2a + 3b\\\\\vec e = 2(4i - 2j) + 3(-3i + 5j)\\\\\vec e = 8i - 4j - 9i + 15j\\\\\vec e = -i +11 j[/tex]
Hence, the value of vector e is -i+11j.
Learn more about Vector:
https://brainly.com/question/13188123