Respuesta :
mass of the space probe is given as
m = 1700 lbm = 771.12 kg
each thrust will apply a net force
[tex]F = 225 milli N = 0.225 N[/tex]
now we will have
[tex]v = at[/tex]
[tex]v = \frac{F}{m}*t[/tex]
given that we have final speed v = 420 miles/minute
we need to convert it into m/s
[tex]v = 420\frac{miles}{min}*\frac{1609 m}{1 miles}*\frac{1 min}{60 s}[/tex]
[tex]v = 11263 m/s[/tex]
now from above equation
[tex]11263 = \frac{0.225}{771.12}* t[/tex]
[tex]t = 3.86 * 10^7 s[/tex]
[tex]t = 10722.3 hours = 446.8 days = 63.8 weeks[/tex]
so it will require 63.8 weeks to reach the given speed
Answer:
The 64 weeks
Explanation:
Thinking process:
First we gather the data:
1700lbm = 771.107 kg
225 milliNewtons = 0.225 N
Final velocity = 420 mil/min = 11 265.4 m/s
Let the initial velocity, u₀ = 0 m/s
Final velocity = v m/s
Acceleration is given by the formula, [tex]a = \frac{F}{m} \\ =\frac{0.225}{771.107} \\ = 0.0002918 m/s^{2}[/tex]
However, we know that the final velocity, v is given by [tex]v = u + at[/tex]
where u = 0
a = 0.0002918
t = ?
v = 11 265.4 m/s
substituting:
11 265.4 = 0 + (0.0002918) (t)
dividing both sides gives, t = 38 606 579 s
1 day = 86 400 s
t = 446.83 days
= 63.8 weeks
= 64 weeks