Respuesta :

Answer:

Graph

Step-by-step explanation:

Given: Vertex: (3,5) and y-intercept at y=1

Passing point: (0,1)

Vertex form of parabola:

[tex]y=a(x-h)^2+k[/tex]

where, (h,k) is vertex.

[tex]y=a(x-3)^2+5[/tex]

Passing point: (0,1)

[tex]1=a(0-3)^2+5[/tex]

[tex]a=-\dfrac{4}{9}[/tex]

Equation of parabola:

[tex]y=-\dfrac{4}{9}(x-3)^2+5[/tex]

Plot vertex and y-intercept for graph.

Please see the attachment for graph.

Ver imagen isyllus

The equation of the parabola is [tex]\mathbf{y =-\frac 49(x - 3)^2 + 5}[/tex]; see attachment for its graph

The given parameters are:

(h,k) = (3,5) --- The vertex

(x,y) = (0,1) ---- the y-intercept

A parabola is represented as:

[tex]\mathbf{y =a(x - h)^2 + k}[/tex]

Substitute the given values in the equation

[tex]\mathbf{1 =a(0 - 3)^2 + 5}[/tex]

Evaluate the bracket

[tex]\mathbf{1 =a(-3)^2 + 5}[/tex]

Expand the bracket

[tex]\mathbf{1 =9a+ 5}[/tex]

Subtract 5 from both sides

[tex]\mathbf-{4 =9a}[/tex]

Divide both sides by 9

[tex]\mathbf{a =- \frac 49}[/tex]

So, the equation of the parabola becomes

[tex]\mathbf{y =a(x - h)^2 + k}[/tex]

[tex]\mathbf{y =-\frac 49(x - 3)^2 + 5}[/tex]

See attachment for the graph of the parabola

Read more about parabolas at:

https://brainly.com/question/21685473

Otras preguntas