Respuesta :
Answer:
Graph
Step-by-step explanation:
Given: Vertex: (3,5) and y-intercept at y=1
Passing point: (0,1)
Vertex form of parabola:
[tex]y=a(x-h)^2+k[/tex]
where, (h,k) is vertex.
[tex]y=a(x-3)^2+5[/tex]
Passing point: (0,1)
[tex]1=a(0-3)^2+5[/tex]
[tex]a=-\dfrac{4}{9}[/tex]
Equation of parabola:
[tex]y=-\dfrac{4}{9}(x-3)^2+5[/tex]
Plot vertex and y-intercept for graph.
Please see the attachment for graph.

The equation of the parabola is [tex]\mathbf{y =-\frac 49(x - 3)^2 + 5}[/tex]; see attachment for its graph
The given parameters are:
(h,k) = (3,5) --- The vertex
(x,y) = (0,1) ---- the y-intercept
A parabola is represented as:
[tex]\mathbf{y =a(x - h)^2 + k}[/tex]
Substitute the given values in the equation
[tex]\mathbf{1 =a(0 - 3)^2 + 5}[/tex]
Evaluate the bracket
[tex]\mathbf{1 =a(-3)^2 + 5}[/tex]
Expand the bracket
[tex]\mathbf{1 =9a+ 5}[/tex]
Subtract 5 from both sides
[tex]\mathbf-{4 =9a}[/tex]
Divide both sides by 9
[tex]\mathbf{a =- \frac 49}[/tex]
So, the equation of the parabola becomes
[tex]\mathbf{y =a(x - h)^2 + k}[/tex]
[tex]\mathbf{y =-\frac 49(x - 3)^2 + 5}[/tex]
See attachment for the graph of the parabola
Read more about parabolas at:
https://brainly.com/question/21685473