Respuesta :

Observe the figure.

After the given statements as:

Statement 1: [tex]UV\parallel WZ[/tex]

Statement 2: Points S,Q,R and T are all lie on the same plane.

Statement 3: [tex]m \angle SQT = 180^\circ[/tex]

Statement 4: [tex]m \angle SQV + m \angle VQT = m \angle SQT[/tex]

Statement 5: [tex]m \angle SQV + m \angle VQT =180^\circ[/tex]

Now, the next statement is as:

Statement 6:  [tex]m \angle VQT + m \angle ZRS =180^\circ[/tex] which is statement III.

(Same side interior angles theorem)

Statement 7: [tex]m \angle SQV + m \angle VQT=m \angle VQT + m \angle ZRS[/tex] which is statement II.

(Substitution property of equality)

Statement 8: [tex]m \angle SQV + m \angle VQT-m \angle VQT=m \angle VQT + m \angle ZRS-m \angle VQT[/tex]

[tex]m \angle SQV = m \angle ZRS[/tex]which is statement I.

(Subtraction property of equality)

So, the correct order of the given reasons to complete the proof is III, II, I.

Therefore, Option 4 is the correct answer.