Respuesta :

Answer:

Given the system of equation:

12x + 4y =152                  .......[1]

32x + 12y = 420              ......[2]

Multiply equation [1] by 3 we get;

[tex]3\cdot(12x +4y) = 3 \cdot 152[/tex]

Using distributive property: [tex]a \cdot (b+c) = a \cdot b + a\cdot c[/tex]

[tex]36x + 12y= 456[/tex]             ......[3]

On solving equation [2] and [3] simultaneously we get;

x = 9

Substitute the value of x= 9 in [1] to solve for y;

[tex]12 (9) +4y = 152[/tex]

108 + 4y = 152

Subtract 108 from both sides we have;

108 + 4y -108 = 152- 108

Simplify:

4y = 44

Divide both sides by 4 we get;

[tex]\frac{4y}{4} = \frac{44}{4}[/tex]

Simplify:

y= 11

therefore, the value of x = 9  and y =11.

Also, you can see the graph of the system of equation below:


Ver imagen OrethaWilkison