The equilibrium constant for the equilibrium, 3A+ 2B ↔ 2D + E, is 4.22 x 10-3 . What is the equilibrium constant for the equilibrium: D + (1/2)E ↔ (3/2)A + B?

2.1110-3

237

-2.1110-3

15.4

Respuesta :

Option D: 15.4

There are following rules for manipulating equilibrium constant:

1. On adding two equilibrium reactions, their equilibrium constant gets multiplied.

For example: [tex]A\rightarrow B (K_{1})[/tex]

[tex]C\rightarrow D(K_{2})[/tex]

On adding two reactions,

[tex]A+C\rightarrow B+D(K=K_{1}\times K_{2})[/tex]

2. On subtracting two equilibrium reactions, their equilibrium constant gets divided.

For example: [tex]A\rightarrow B (K_{1})[/tex]

[tex]C\rightarrow D(K_{2})[/tex]

On subtracting two reactions,

[tex]A-C\rightarrow B-D[/tex]

Or,

[tex]A+D\rightarrow B+C(K=\frac{K_{1}}{K_{2}})[/tex]

3. If an equilibrium reaction is multiplied by any constant, it goes to the power of its equilibrium constant.

For example: [tex]A\rightarrow B (K_{1})[/tex]

Thus,

[tex]2A\rightarrow 2B (K=K_{1}^{2})[/tex]

4. On reversing an equilibrium reaction, the equilibrium constant of reversed reaction becomes inverse of the original value.

For example: [tex]A\rightarrow B (K_{1})[/tex]

Thus,

[tex]B\rightarrow A (K=\frac{1}{K_{1}})[/tex]

Now, the given equilibrium reaction is as follows:

[tex]3A+2B\rightleftharpoons 2D+E (K=4.22\times 10^{-3})[/tex]

To get the desired reaction, first reverse the above reaction as follows:

[tex]2D+E\rightleftharpoons 3A+2B\left ( K=\frac{1}{4.22\times 10^{-3}} \right )[/tex]

Now, multiply the above reaction with 1/2,

[tex]D+1/2E\rightleftharpoons 3/2A+B\left ( K=\left (\frac{1}{4.22\times 10^{-3}}  \right )^{1/2} \right )[/tex]

Thus,

[tex]K=\left (\frac{1}{4.22\times 10^{-3}} \right )^{1/2}=15.4[/tex]

Therefore, equilibrium constant for the resultant reaction is 15.4 that is option D.