Respuesta :
Answer : The wrong equation is, [tex]K_p=K_c\times (RT)^{-5}[/tex]
Explanation :
The given equilibrium reaction is,
[tex]4Fe(s)+3O_2(g)\rightarrow 2Fe_2O_3(s)[/tex]
The expression for equilibrium constant in terms of concentration,
[tex]K_c=\frac{1}{[O_2]^3}\\\\K_c=[O_2]^{-3}[/tex]
The expression for equilibrium constant in terms of pressure,
[tex]K_p=\frac{1}{(P_{O_2})^3}\\\\K_p=(P_{O_2})^{-3}[/tex]
The relation between the equilibrium constant in terms of concentration and equilibrium constant in terms of pressure will be,
[tex]K_p=K_c\times (RT)^{\Delta n_g}[/tex]
where,
[tex]\Delta n_g[/tex]= number of moles of gaseous products - number of moles of gaseous reactants
R = gas constant
T= temperature
For reaction the given reaction,
[tex]\Delta n_g[/tex]= number of moles of gaseous products - number of moles of gaseous reactants= 0 - 3 = -3
[tex]K_p=K_c\times (RT)^{-3}[/tex]
Therefore, the correct equations for equilibrium are, [tex]K_c=[O_2]^{-3}[/tex], [tex]K_p=(P_{O_2})^{-3}[/tex] and [tex]K_p=K_c\times (RT)^{-3}[/tex]