Respuesta :
Answer
(y + 1) / (y - 1)
Explanation
(1 + 1/y) / (1 - 1/y)
1+1/y = 1/y(y + 1)
= (1/y)(y + 1)
1 - 1/y = (1/y)(y - 1)
= (1/y)(y - 1)
∴ (1/y)(y + 1) / (1/y)(y - 1) = (y + 1) / (y - 1)
Answer:
[tex]\frac{y+1}{y-1}[/tex]
Step-by-step explanation:
To solve a complex fraction like [tex]\frac{(1+\frac{1}{y} )}{(1-\frac{1}{y} )}[/tex], take LCM of both the terms separately first to get:
[tex]1+\frac{1}{y}[/tex] = [tex]\frac{y+1}{y}[/tex]
and
[tex]1-\frac{1}{y} = \frac{y-1}{y}[/tex]
Now combine and divide these terms to get:
[tex]\frac{\frac{y+1}{y} }{\frac{y-1}{y} }[/tex]
The term [tex]y[/tex] in both the denominators will be cancelled out by each other and you will be left with:
[tex]\frac{y+1}{y-1}[/tex]
Therefore, the expression [tex]\frac{y+1}{y-1}[/tex] is equivalent to the given complex fraction.