Hi,
Solving:
[tex] \frac{2 {y}^{2} - 6y - 20}{4y + 12} \div \frac{ {y}^{2} + 5y + 6}{ 3 {y}^{2} + 18y + 27 } \\ \frac{2 {y}^{2} - 6y - 20}{4y + 12} \div \frac{3 {y}^{2} + 18y + 27 }{{y}^{2} + 5y + 6} \\ \frac{2( {y}^{2} - 3y - 10)}{4y + 12} \div \frac{3 {y}^{2} + 18y + 27}{ {y}^{2} + 5y + 6} \\ \frac{2( {y}^{2} - 3y - 10}{2(2y + 6)} \times \frac{3 {y}^{2} + 18y + 27}{ {y}^{2} + 5y + 6} \\ \frac{ \not2( {y}^{2} - 3y - 10) }{ \not2(2y + 6)} \times \frac{3( {y}^{2} + 6y + 9) }{ {y}^{2} + 5y + 6} \\ \frac{ {y}^{2} + 2y - 5y - 10 }{2(y + 3)} \times \frac{3( {y}^{2} + 6y + 9) }{ {y}^{2} + 3y + 2y + 6} \\ \frac{y \times (y + 2) - 5(y + 2)}{2(y + 3)} \times \frac{3(y + 3)^{2} }{y \times (y + 3) + 2(y + 3)} \\ \frac{ (y + 2) \times (y - 5)}{2(y + 3)} \times \frac{3(y + 3)^{2} }{(y + 3) \times (y + 2)} \\ \frac{y - 5}{2(y + 3)} \times 3(y + 3) \\ \frac{y - 5}{2} \times 3 = \frac{3y - 15}{2} \: \: \: \: \: \: \: \: \: \: \: \: result[/tex]
Answer: B
Hope this helps.
r3t40