Respuesta :

Answer:

The correct option is A.

Step-by-step explanation:

The given expression is

[tex]\frac{x+2}{4x^2+5x+1}\times \frac{4x+1}{x^2-4}[/tex]

[tex]\frac{x+2}{4x^2+4x+x+1}\times \frac{4x+1}{x^2-2^2}[/tex]

[tex]\frac{x+2}{4x(x+1)+1(x+1)}\times \frac{4x+1}{(x-2)(x+2)}[/tex]

[tex]\frac{x+2}{(x+1)(4x+1)}\times \frac{4x+1}{(x-2)(x+2)}[/tex]

[tex]\frac{(x+2)(4x+1)}{(x+1)(4x+1)(x-2)(x+2)}[/tex]

Cancel out common factors.

[tex]\frac{1}{(x+1)(x-2)}[/tex]

Therefore option A is correct.

Answer:

A. [tex]\frac{1}{(r+1)\cdot (r-2)}[/tex]

Step-by-step explanation:

We have been given an expression [tex]\frac{r+2}{4r^2+5r+1}\cdot \frac{4r+1}{r^2-4}[/tex]. We are asked to simplify our given expression.    

We will factor the denominators of both fractions as shown below:    

[tex]4r^2+5r+1[/tex]

[tex]4r^2+4r+r+1[/tex] Splitting the middle term.

[tex](4r^2+4r)+(r+1)[/tex]  Making groups.

[tex]4r(r+1)+(r+1)[/tex]  Factor out 4r from 1st group.

[tex]4r(r+1)+1(r+1)[/tex]  Factor out 1 from 2nd group.

[tex](4r+1)(r+1)[/tex]

Using difference of squares we will factor the 2nd denominator as:

[tex]r^2-4=r^2-2^2=(r+2)(r-2)[/tex]

Substituting these values in our given problem we will get,

[tex]\frac{r+2}{(4r+1)(r+1)}\cdot \frac{4r+1}{(r+2)(r-2)}[/tex]

After cancelling out terms we will get,

[tex]\frac{1}{(r+1)}\cdot \frac{1}{(r-2)}[/tex]

[tex]\frac{1}{(r+1)\cdot (r-2)}[/tex]

Therefore, option A is the correct choice.