Respuesta :

ΔVUQ

∠V + ∠U + ∠Q = 180°       triangle sum theorem

b + 75° + 75° = 180°        substitution

b + 150° = 180°               simplify (add like terms)

b  = 30°                          subtraction property of equality

ΔUWT

∠U is a vertical angle so ∠U = 75°

∠Tand 101° is a linear pair so ∠T + 101° = 180°  ⇒   ∠T = 79°

∠U + ∠W + ∠T = 180°

75° + e + 79 = 180°

e + 154° = 180°

e = 26°

ΔTXS

∠T and 101° is a linear pair so ∠T + 101° = 180°  ⇒   ∠T = 79°

∠T + ∠X + ∠S = 180°

79° + f + 88 = 180°

f + 167° = 180°

f = 13°

ΔVTY

∠V + ∠T + ∠Y = 180°

∠V was solved above (b = 30°)

∠T is a vertical angle so = 101°

30° + 101° + c = 180°

131° + c = 180°

c = 49°

ΔWZS

∠W + ∠Z + ∠S = 180°

∠W was solved above (e = 26°)

∠S is a linear pair with 88° so ∠S + 88° = 180°  ⇒  ∠S = 92°

26° + d + 92° = 180°

d + 118° = 180°

d = 62°

Answer: b=30°, c=49°, d=62°, e=26°, f=13°