Respuesta :

We have to solve the system of equations by Cramer's rule.

The coefficient matrix is given by

[tex]D=\begin{bmatrix}3&4\\8 &-2\end{bmatrix}[/tex]

Let us find the determinant of coefficient matrix.

[tex]|D|= -6-32=-38[/tex]

For X-matrix

[tex]D_x=\begin{bmatrix}15&4\\40 & -2\end{bmatrix}[/tex]

Now, we find its determinant

[tex]|D_x|=-30-160=-190[/tex]

For Y-matrix

[tex]D_x=\begin{bmatrix}15&3\\ 40&8\end{bmatrix}[/tex]

Now, we find its determinant

[tex]|D_y|=120-120=0[/tex]

Therefore, the value for x is given by

[tex]x=\frac{D_x}{D}\\\\x=\frac{-190}{-38}\\\\x=5[/tex]

The value for x is 5.

Answer:

D) x=5

Step-by-step explanation:

Edge 2021 :)