Respuesta :

Answer:

The ratio is [tex]\frac{CL}{AC}=\frac{2BC}{3AB}[/tex]

Step-by-step explanation:

we know that

In the right triangle ABC

[tex]cos(30\°)=AC/AB[/tex]

[tex]AC=cos(30\°)(AB)[/tex]

we know that

[tex]cos(30\°)=\frac{\sqrt{3}}{2}[/tex]

substitute

[tex]AC=\frac{\sqrt{3}}{2}(AB)[/tex]

In the right triangle LBC

[tex]tan(30\°)=CL/BC[/tex]

[tex]CL=tan(30\°)(BC)[/tex]

we know that

[tex]tan(30\°)=\frac{\sqrt{3}}{3}[/tex]

substitute

[tex]CL=\frac{\sqrt{3}}{3}(BC)[/tex]

see the attached figure to better understand the problem

Find the ratio CL: AC

we have

[tex]CL=\frac{\sqrt{3}}{3}(BC)[/tex]

[tex]AC=\frac{\sqrt{3}}{2}(AB)[/tex]

[tex]\frac{CL}{AC}=\frac{\frac{\sqrt{3}}{3}(BC)}{\frac{\sqrt{3}}{2}(AB)}=\frac{2BC}{3AB}[/tex]

Ver imagen calculista