Respuesta :

Since it has e we can use the natural long so it would be
 in2981=4x

Answer:

[tex]\ln(2981)=4x[/tex]

Step-by-step explanation:

The given equation is [tex]e^{4x}\approx2981[/tex]

We can use the relation between logarithmic and exponential function.

[tex]\text{If }y=b^x\text{ then }x=\log_b(y)[/tex]

Here,

b = e

x = 4x

y = 2981

Thus, using the above relation, we can write

[tex]e^{4x}\approx2981\\\\\log_e(2981)=4x[/tex]

We know [tex]\log_e(2981)=\ln(2981)[/tex]

Hence, we have

[tex]e^{4x}\approx2981\\\\\ln(2981)=4x[/tex]

Otras preguntas