Respuesta :
Answer:
[tex]\ln(2981)=4x[/tex]
Step-by-step explanation:
The given equation is [tex]e^{4x}\approx2981[/tex]
We can use the relation between logarithmic and exponential function.
[tex]\text{If }y=b^x\text{ then }x=\log_b(y)[/tex]
Here,
b = e
x = 4x
y = 2981
Thus, using the above relation, we can write
[tex]e^{4x}\approx2981\\\\\log_e(2981)=4x[/tex]
We know [tex]\log_e(2981)=\ln(2981)[/tex]
Hence, we have
[tex]e^{4x}\approx2981\\\\\ln(2981)=4x[/tex]