Respuesta :
There is no greatest perimeter.
The shortest perimeter for a fixed area is when you use
the area to make a circle.
The next shortest perimeter for a fixed area is when you
use the area to make a square.
But the longer and skinnier you make it, the longer the perimeter
becomes, without any limit.
Examples:
circle, radius = 3.523 . . area = 39 . perimeter = 22.14
√39 by √39 . . . . . area = 39 . . . . . perimeter = 24.98
6 by 6.5 . . . . . . . area = 39 . . . . . perimeter = 25
5 by 7.8 .. . . . . . . area = 39 . . . . . perimeter = 25.6
4 by 9.75 . .. . . . . area = 39 . . . . . perimeter = 27.5
3 by 13 . . . . . . . . area = 39 . . . . . perimeter = 32
2 by 19.5 . .. . . . . area = 39 . . . . . perimeter = 43
1 by 39 . . . . . . . . area = 39 . . . . . perimeter = 80
0.1 by 390 . . . . . area = 39 . . . . . perimeter = 780.2
0.01 by 3,900 . . area = 39 . . . . . perimeter = 7,800.02
The shortest perimeter for a fixed area is when you use
the area to make a circle.
The next shortest perimeter for a fixed area is when you
use the area to make a square.
But the longer and skinnier you make it, the longer the perimeter
becomes, without any limit.
Examples:
circle, radius = 3.523 . . area = 39 . perimeter = 22.14
√39 by √39 . . . . . area = 39 . . . . . perimeter = 24.98
6 by 6.5 . . . . . . . area = 39 . . . . . perimeter = 25
5 by 7.8 .. . . . . . . area = 39 . . . . . perimeter = 25.6
4 by 9.75 . .. . . . . area = 39 . . . . . perimeter = 27.5
3 by 13 . . . . . . . . area = 39 . . . . . perimeter = 32
2 by 19.5 . .. . . . . area = 39 . . . . . perimeter = 43
1 by 39 . . . . . . . . area = 39 . . . . . perimeter = 80
0.1 by 390 . . . . . area = 39 . . . . . perimeter = 780.2
0.01 by 3,900 . . area = 39 . . . . . perimeter = 7,800.02
x=lentht
y=width
area=xy
xy=39 ⇒x=39/y
Perimeter of a rectangle=2x+2y
P(x,y)=2x+2y
P(y)=2(39/y)+2y
P(y)=78/y+2y
P(y)=(78+2y²)/y
Therefore ;P(y) will be gratest if y⇒0
We calculate the next limit.
lim y⇒0 (78+2y²)/y=lim y⇒0 (78/y+2y)=∞
For exmple:
y=0.1 ft
then;; x=39/ 0.1=390 ft
P(2*390 ft+2*0.1 ft)=780.2
y=0.001 ft
Then; x=39/0.001=39000 ft
P(2*39000 ft+0.001 ft)=78000,002 ft.
Answer: the greatest perimeter of a rectangle with an area of 39 ft²⇒∞
y=width
area=xy
xy=39 ⇒x=39/y
Perimeter of a rectangle=2x+2y
P(x,y)=2x+2y
P(y)=2(39/y)+2y
P(y)=78/y+2y
P(y)=(78+2y²)/y
Therefore ;P(y) will be gratest if y⇒0
We calculate the next limit.
lim y⇒0 (78+2y²)/y=lim y⇒0 (78/y+2y)=∞
For exmple:
y=0.1 ft
then;; x=39/ 0.1=390 ft
P(2*390 ft+2*0.1 ft)=780.2
y=0.001 ft
Then; x=39/0.001=39000 ft
P(2*39000 ft+0.001 ft)=78000,002 ft.
Answer: the greatest perimeter of a rectangle with an area of 39 ft²⇒∞