In the following figure CB is perpendicular to AB, and CD bisects angle ACB. Find angle DBF

Answer: [tex]\angle{DBF}=115^{\circ}[/tex]
Step-by-step explanation:
In the given picture , We are given Δ ABC in which [tex]\angle{BCD}=(3x-2)^{\circ},\ \angle{ACD}=(5x-20)^{\circ}[/tex]
Segment CD bisects angle ACB.
i.e. [tex]\angle{BCD}\cong\angle{ACD}[/tex]
i.e. [tex]3x-2=5x-20\\\\\Rightarrow\ 5x-3x=20-2\\\\\Rightarrow\ 2x=18\\\\\Rightarrow\ x=\dfrac{18}{2}=9[/tex]
Now, [tex]\angle{BCD}=(5(9)-20)^{\circ}=25^{\circ}[/tex]
Since in a triangle ,
Exterior angle = Sum of opposite interior angles
i.e. [tex]\angle{DBF}=\angle{BCD}+\angle{CDB}[/tex]
[tex]\angle{DBF}=25^{\circ}+90^{\circ}=115^{\circ}[/tex]
Hence, [tex]\angle{DBF}=115^{\circ}[/tex]