Expressed as a product of its prime factors in index form, a number N is
N=3 X 5^2 X x^3

Express 5N^2 as a product of prime factors in index form.
Give your answer in terms of x.

Respuesta :

ANSWER



[tex]5N^2=3^{2} \times 5^{5} \times x^{6}[/tex]



EXPLANATION


[tex]N=3\times5^2 \times x^3[/tex].


[tex]5N^2=5(3\times5^2 \times x^3)^2[/tex]


Recall this property of exponents;


[tex](a^m)^2=a^{m} \times a^m[/tex]



So our product becomes;


[tex]5N^2=5(3\times5^2 \times x^3) \times (3\times5^2 \times x^3)[/tex]



[tex]5N^2=5\times 3\times 3 \times 5^2 \times 5^2 \times x^3 \times x^3[/tex]


[tex]5N^2=3\times 3\times 5 \times 5^2 \times 5^2 \times x^3 \times x^3[/tex]



Recall this law of exponents:


[tex]a^m \times a^n =a ^{m+n}[/tex]


[tex]5N^2=3^{1+1} \times 5^{1+2+2} \times x^{3+3}[/tex]


[tex]5N^2=3^{2} \times 5^{5} \times x^{6}[/tex]