Respuesta :

Answer:

I am hoping this was explained well enough:


Step  1  :


Isolate the square root on the left hand side :


    Radical already isolated  


    √2x-7 = 5-x


Step  2  :


Eliminate the radical on the left hand side :


    Raise both sides to the second power


    (√2x-7)2 = (5-x)2


    After squaring  


    2x-7 = x2-10x+25


Step  3  :


Solve the quadratic equation :


    Rearranged equation


    x2  - 12x  + 32 = 0


    This equation has two rational roots:


      {x1, x2}={8, 4}


 


Step  4  :


Check that the first solution is correct :


    Original equation


    √2x-7 = 5-x


    Plug in 8 for  x  


     √2•(8)-7 = 5-(8)


     Simplify


     √9 = -3


     Solution does not check  


     3 ≠ -3  


Step  5  :


Check that the second solution is correct :


    Original equation


    √2x-7 = 5-x


    Plug in 4 for  x  


     √2•(4)-7 = 5-(4)


     Simplify


     √1 = 1


     Solution checks !!


    Solution is:  


     x = 4


One solution was found :


                       x = 4


-Agarvated