To obtain the sequence 1, 1/3, 1/9, 1/27,..., what domain should be applied to the exponential function shown here?

A) (0, ∞)
B) [0, ∞)
C) {1, 2, 3, ...}
D) {0, 1, 2, 3, ...}

To obtain the sequence 1 13 19 127 what domain should be applied to the exponential function shown here A 0 B 0 C 1 2 3 D 0 1 2 3 class=

Respuesta :

frika

Consider the exponential function

[tex]y=\left(\dfrac{1}{3}\right)^x.[/tex]

  • At x=0, [tex]y=\left(\dfrac{1}{3}\right)^0=1;[/tex]
  • At x=1, [tex]y=\left(\dfrac{1}{3}\right)^1=\dfrac{1}{3};[/tex]
  • At x=2, [tex]y=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9};[/tex]
  • At x=3, [tex]y=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27};[/tex]
  • and so on.

Thus, the domain is {0, 1, 2, 3, ...}

Answer: option D.

Answer:

d edge 2021

Step-by-step explanation: