(15 Points)
Find the derivative of each of the following (inverse function)
[tex]f(x) = x^2 arctan(x)[/tex]
[tex]f(x) = xarcsin(1-x^2)[/tex]

Respuesta :

ANSWER 1



Note that,


[tex]f(u)=tan^{-1}(u)[/tex]


is the same as


[tex]f(u)=arctan(u)[/tex]



We apply the product rule.


[tex]f(x)=x^2tan^{-1}(x)[/tex]


So we keep the second function and differentiate the first,plus we keep the first function and differentiate the second.


[tex]f'(x)=(x^2)'tan^{-1}(x)+x^2(tan^{-1}(x))' [/tex]



Recall that,

If

[tex]f(u)=tan^{-1}(u)[/tex]



Then,

[tex]f'(u)=\frac{1}{1+u^2}} \times u'[/tex]


This implies that,

[tex]f'(x)=2xtan^{-1}(x)+\frac{x^2}{x^2+1} [/tex]



ANSWER 2


We apply the product rule and the chain rules of differentiation here.



[tex]f(x)=xsin^{-1}(1-x^2)[/tex]




[tex]f'(x)=x'sin^{-1}(1-x^2)+x(sin^{-1}(1-x^2))' [/tex]



Recall that,

If

[tex]f(u)=sin^{-1}(u)[/tex]



Then,

[tex]f'(u)=\frac{1}{\sqrt{1-u^2}} \times u'[/tex]



This implies that,


[tex]f'(x)=sin^{-1}(1-x^2)+x \times \frac{1}{\sqrt{1-(1-x^2)^2}}\times (-2x) [/tex]


[tex]f'(x)=sin^{-1}(1-x^2)-\frac{2x^2}{\sqrt{1-(1-2x^2+x^4)}} [/tex]


[tex]f'(x)=sin^{-1}(1-x^2)-\frac{2x^2}{\sqrt{1-1+2x^2-x^4}}[/tex]



[tex]f'(x)=sin^{-1}(1-x^2)-\frac{2x^2}{\sqrt{2x^2-x^4}}[/tex]