YOU Will be SHOWERED With POINTS IF U HELP ME
The function f(x)=26.2−0.1x models the distance a runner is from the finish line of a race 26.2 miles long, where x represents the number of minutes running from the
50-minute mark through the 100-minute mark of the race.

What is the practical range of the function?


all real numbers between 50 and 100 inclusive

integers from 50 to 100 inclusive

all real numbers between 16.2 and 21.2 inclusive

all integers

Which function represents the graph of h(x)=2|x−3|+1 after it is translated 2 units to the right?




f(x)=2|x−3|+3

f(x)=2|x−1|+1

f(x)=2|x−3|−1

f(x)=2|x−5|+1

Respuesta :

Answer: C

Step-by-step explanation:

f(x) = 26.2 - 0.1x

f(100) = 26.2 - 0.1(100)

         = 26.2 = 10.0

         = 16.2

f(5-) = 26.2 - 0.1(50)

       = 26.2 - 5.0

       = 21.2

******************************************************

Answer: D

Step-by-step explanation:

f(x) = 2|x - 3| + 1

2 units right: f(x) = 2|x - (3 + 2)| + 1

                           = 2|x - 5| + 1

The range of a dataset is the set of output values the function can take.

  • The range of the function is: all real values between 16.2 and 21.2
  • The translated function is: (d) [tex]\mathbf{f(x) = 2|x - 5| + 1}[/tex]

Range

The function is given as:

[tex]\mathbf{f(x)) = 26.2 - 0.1x}[/tex]

When x = 50,

[tex]\mathbf{f(50) = 26.2 - 0.1 \times 50 = 21.2}[/tex]

When x = 100,

[tex]\mathbf{f(100) = 26.2 - 0.1 \times 100 = 16.2}[/tex]

So, the range of the function is:

All real values between 16.2 and 21.2

Function Transformation

The function is given as:

[tex]\mathbf{h(x) = 2|x - 3| + 1}[/tex]

When the function is translated 2 units right, we have:

[tex]\mathbf{f(x) = 2|x - 3 - 2| + 1}[/tex]

[tex]\mathbf{f(x) = 2|x - 5| + 1}[/tex]

Hence, the translated function is: (d) [tex]\mathbf{f(x) = 2|x - 5| + 1}[/tex]

Read more about range and transformation at:

https://brainly.com/question/4345123