Respuesta :
Answer:
After 9.03 × 105 years, there will 0.37 × 1012 atoms of chlorine-36 and 2.602 × 1012 atoms of argon-36.
Explanation:
Half life an element is the time after which it decays to half of its initial concentration.
Half life of chlorine-36 is 3.01 * 105. And chlorine decays to Argon-36.
So 9.03 * 105 means, There are 3 half life of Chlorine.
- After 1st half life,
The amount of chlorine-36 = 1.5 * 1012
The amount of Argon-36 = 1.5 * 1012
- After 2nd half life:
The amount of chlorine-36 = 0.75 * 1012
The amount of Argon-36 = 2.25 * 1012
- After 3rd half life:
The amount of chlorine-36 = 0.372 * 1012
The amount of total Argon-36 = 2.602 * 1012
Answer:
A particular sample contains [tex]3\times 10^{12}atoms [/tex]of chlorine-36. After [tex]9.03 \times 10^5 years[/tex] , there will [tex]3.7533\times 10^{11} [/tex] atoms of chlorine-36 and [tex]2.6246\times 10^{12} [/tex]atoms of argon-36.
Explanation:
Number of isotope chlorine-36 atoms = [tex]N_o=3\times 10^{12} atoms[/tex]
Half-life of chlorine-36 atoms =[tex]t_{\frac{1}{2}}= 3.01\times 10^5 years[/tex]
Number of chlorine-36 atom after time , t = N
t = [tex] 9.03\times 10^5 years[/tex]
[tex]\lambda =\frac{0.693}{3.01\times 10^5 years}[/tex]
[tex]\log[N]=\log[N_o]-\frac{\lambda \times t}{2.303}[/tex]
[tex]\log[N]=\log[3\times 10^{12} atoms]-\frac{0.693\times 9.03\times 10^5 years}{3.01\times 10^5 years\times 2.303}[/tex]
[tex]N=3.7533\times 10^{11} atoms[/tex]
Number of chlorine-36 atom after time = [tex]3.7533\times 10^{11} atoms[/tex]
Number of argon-36 atom after time :
[tex]=N_o-N=3\times 10^{12} atoms=3.7533\times 10^{11} atom[/tex]
[tex]=2.6246\times 10^{12} atoms[/tex]