Solve using long division
Please

1. [tex]Solution,\frac{2x^3+4x^2-5}{x+3}:\quad 2x^2-2x+6-\frac{23}{x+3}[/tex]
[tex]Steps:[/tex]
[tex]\mathrm{Divide}\:\frac{2x^3+4x^2-5}{x+3}:\quad \frac{2x^3+4x^2-5}{x+3}=2x^2+\frac{-2x^2-5}{x+3}[/tex]
[tex]\mathrm{Divide}\:\frac{-2x^2-5}{x+3}:\quad \frac{-2x^2-5}{x+3}=-2x+\frac{6x-5}{x+3}[/tex]
[tex]\mathrm{Divide}\:\frac{6x-5}{x+3}:\quad \frac{6x-5}{x+3}=6+\frac{-23}{x+3}[/tex]
[tex]\mathrm{Simplify}, =2x^2-2x+6-\frac{23}{x+3}[/tex]
[tex]\mathrm{The\:Correct\:Answer\:is\:2x^2-2x+6-\frac{23}{x+3}}[/tex]
2. [tex]Solution, \frac{4x^3-2x^2-3}{2x^2-1}:\quad 2x-1+\frac{2x-4}{2x^2-1}[/tex]
[tex]Steps:[/tex]
[tex]\mathrm{Divide}\:\frac{4x^3-2x^2-3}{2x^2-1}:\quad \frac{4x^3-2x^2-3}{2x^2-1}=2x+\frac{-2x^2+2x-3}{2x^2-1}[/tex]
[tex]\mathrm{Divide}\:\frac{-2x^2+2x-3}{2x^2-1}:\quad \frac{-2x^2+2x-3}{2x^2-1}=-1+\frac{2x-4}{2x^2-1}[/tex]
[tex]\mathrm{The\:Correct\:Answer\:is\:2x-1+\frac{2x-4}{2x^2-1}}[/tex]
[tex]\mathrm{Hope\:This\:Helps!!!}[/tex]
[tex]\mathrm{-Austint1414}[/tex]