In a right triangle, if <0 = 53 and the side opposite to `/_θ` is equal to 2.3 meters, what is the approximate length of the hypotenuse?

Respuesta :

Answer

2.8799


Explanation

θ = 53°

Opposite length to angle θ = 2.3 m

sinθ = opposite / hypotenuse

sin53 = 2.3/hypotenuse

hypotenuse = 2.3/sin53

                    = 2.3/0.7986

                     = 2.8799 m


Answer:

The approximate length of the hypotenuse is 2.88 meters.

Step-by-step explanation:

It is given that in a right angled triangle, [tex]{\theta}=53^{\circ}[/tex] and teh side opposite to [tex]{\theta}[/tex] is 2.3 meters, then using the trigonometry, we have

[tex]\frac{AB}{AC}=sin53^{\circ}[/tex]

Substituting the given values, we have

[tex]\frac{2.3}{x}=sin53^{\circ}[/tex]

⇒[tex]{\frac{2.3}{x}}=0.798[/tex]

⇒[tex]x=\frac{2.3}{0.798}[/tex]

[tex]x=2.88 meters[/tex]

Thus, the approximate length of the hypotenuse is 2.88 meters.

Ver imagen boffeemadrid