Respuesta :
Answer
2.8799
Explanation
θ = 53°
Opposite length to angle θ = 2.3 m
sinθ = opposite / hypotenuse
sin53 = 2.3/hypotenuse
hypotenuse = 2.3/sin53
= 2.3/0.7986
= 2.8799 m
Answer:
The approximate length of the hypotenuse is 2.88 meters.
Step-by-step explanation:
It is given that in a right angled triangle, [tex]{\theta}=53^{\circ}[/tex] and teh side opposite to [tex]{\theta}[/tex] is 2.3 meters, then using the trigonometry, we have
[tex]\frac{AB}{AC}=sin53^{\circ}[/tex]
Substituting the given values, we have
[tex]\frac{2.3}{x}=sin53^{\circ}[/tex]
⇒[tex]{\frac{2.3}{x}}=0.798[/tex]
⇒[tex]x=\frac{2.3}{0.798}[/tex]
⇒[tex]x=2.88 meters[/tex]
Thus, the approximate length of the hypotenuse is 2.88 meters.
