Find the coordinates of the point P that lies along the directed line segment from
G(1,1) to H(8,1) and the partitions the segment in the ratio 1 to 3


PLEASE I'M GOING CRAZY... THESE ARE ALL THE POINTS I CAN GIVE

heres a helpful source


https://oercommons.s3.amazonaws.com/media/courseware/relatedresource/file/imth-6-1-9-6-1-coordinate_plane_plotter/index.html

Respuesta :

Answer:

The coordinate of point P(x,y) is, [tex](\frac{11}{4} ,1)[/tex]

Step-by-step explanation:

Let the coordinate of the point P be (x,y) .

A point P divides a segment GH internally in the ratio m:n, to find the coordinate of point P we use the section formula :

The coordinate of point

[tex]P(x,y) = (\frac{mx_{2}+nx_{1}}{m+n} , \frac{my_{2}+ny_{1}}{m+n})[/tex]

Then, to find the co-ordinates of the point P dividing the line segment GH joining two given points  in a given ratio i.e m:n= 1:3.

Then,

[tex]x= \frac{mx_{2}+nx_{1}}{m+n}[/tex]

[tex]x=\frac{1\cdot 8+3\cdot 1}{1+3} =\frac{8+3}{4}=\frac{11}{4}[/tex].

For y:

[tex]y= \frac{my_{2}+ny_{1}}{m+n}[/tex]

[tex]y=\frac{1\cdot 1+3\cdot 1}{1+3} =\frac{1+3}{4}=\frac{4}{4}=1[/tex].

Therefore, the coordinate of point P(x,y) is, [tex](\frac{11}{4} ,1)[/tex]