Respuesta :

Answer:

0.6 liters paint will he need to cover [tex]0.5 m^2[/tex]

Step-by-step explanation:

Direct Variation states that the two quantities are related in such a way that  increase in one quantity results in a corresponding increase in the other quantity and vice versa, then such type of a variation is called a direct variation.

i.e [tex]y\propto x[/tex]

It is given that the painter uses 1.2 liters of paint to cover [tex]1 m^2[/tex]

This is the situation of Direct Variation:  As less area cover, less liters of paint.

Let two quantities are x  and y;

x represents the area covered by painter

y represents the liters uses by the painter.

Then, the ratio of any two values of y is equal to the corresponding value of x.

i.e,

[tex]\frac{y_{1}}{y_{2}} =\frac{x_{1}}{x_{2}}[/tex] or

[tex]\frac{y_{1}}{x_{1}} =\frac{y_{2}}{x_{2}}[/tex]

therefore, from the given information we have;

[tex]\frac{1.2}{1}= \frac{y_{2}}{0.5}[/tex]

Simplify:

[tex]y_{2}= 0.5 \cdot 1.2 =0.6[/tex]

Therefore, 0.5 liters paint required by the painter to cover the area [tex]0.5 m^2[/tex]








Answer:

0.6m

Step-by-step explanation: