Respuesta :

ANSWER

[tex]x=\frac{14.5\degree}{3}+120\degree n\:or\:x=\frac{165.5\degree}{3} +120\degree n[/tex], for [tex]n\ge 0[/tex], where [tex]n[/tex] is an integer.


EXPLANATION


We want to solve the trigonometric equation;


[tex]Sin(3x)=\frac{1}{4}[/tex]


Since sine ratio is positive, it means the argument,[tex](3x)[/tex] is either the first quadrant or second quadrant.


This implies that;


[tex](3x)=arcsin(\frac{1}{4})[/tex]


[tex](3x)=14.5\degree[/tex] in the first quadrant.


Or


[tex](3x)=180\degree-14.5\degree=165.5\degree[/tex] in the second quadrant.


Since the sine function has a period of [tex]360\degree[/tex], The general solution is given by


[tex](3x)=14.5\degree+360\degree n\:or\:(3x)=165.5\degree +360\degree n[/tex],for [tex]n\ge 0[/tex], where [tex]n[/tex] is an integer.


Dividing through by 3, we obtain the final solution to be;


[tex]x=\frac{14.5\degree}{3}+120\degree n\:or\:x=\frac{165.5\degree}{3} +120\degree n[/tex], for [tex]n\ge 0[/tex], where [tex]n[/tex] is an integer.


Otras preguntas