Respuesta :
Ans(a):
Given function is [tex]f(x)=\frac{3x-1}{x+4}[/tex]
we know that any rational function is not defined when denominator is 0 so that means denominator x+4 can't be 0
so let's solve
x+4≠0 for x
x≠0-4
x≠-4
Hence at x=4, function can't have solution.
Ans(b):
We know that vertical shift occurs when we add something on the right side of function so vertical shift by 4 units means add 4 to f(x)
so we get:
g(x)=f(x)+4
[tex]g(x)=\frac{3x-1}{x+4}+4[/tex]
We may simplify this equation but that is not compulsory.
Comparision:
Graph of g(x) will be just 4 unit upward than graph of f(x).
Ans(c):
To find value of x when g(x)=8, just plug g(x)=8 in previous equation
[tex]8=\frac{3x-1}{x+4}+4[/tex]
[tex]8-4=\frac{3x-1}{x+4}[/tex]
[tex]4=\frac{3x-1}{x+4}[/tex]
[tex]4(x+4)=(3x-1)[/tex]
4x+16=3x-1
4x-3x=-1-16
x=-17
Hence final answer is x=-17
Answer:
Part a) [tex]x=-4[/tex]
Part b) [tex]g(x)=\frac{3x-1}{x+4}+4[/tex]
Part c) [tex]x=-17[/tex]
Step-by-step explanation:
we have
[tex]f(x)=\frac{3x-1}{x+4}[/tex]
Part a) At which value of x will the function not have a solution?
we know that
In the function f(x) the denominator can not be zero
therefore
To find the value of x at which the function not have solution, equate the denominator to zero
[tex]x+4=0[/tex]
solve for x
[tex]x=-4[/tex]
Part b) If g(x) is a vertical shift of [tex]4[/tex] units of f(x), write the function of g(x). How does the graph of g(x) compare to the graph of f(x)?
In this problem the rule of the translation f(x)-----> g(x) is
[tex](x,y)------> (x,y+4)[/tex]
That means-----> the translation is [tex]4[/tex] units up
The function g(x) is equal to
[tex]g(x)=f(x)+4[/tex]
[tex]g(x)=\frac{3x-1}{x+4}+4[/tex]
Part c) What is the value of x when [tex]g(x)= 8[/tex]?
Substitute the value of [tex]g(x)= 8[/tex] in the equation and solve for x
[tex]8=\frac{3x-1}{x+4}+4[/tex]
[tex]8-4=\frac{3x-1}{x+4}[/tex]
[tex]4(x+4)=3x-1[/tex]
[tex]4x+16=3x-1[/tex]
[tex]4x-3x=-16-1[/tex]
[tex]x=-17[/tex]