Respuesta :

Equation simplifies to y=3/2x+4, so y-int=4 and slope=3/2 (up 3/right 2)

3 plots --> (-2, 1), (0, 4), (3, 6)

For this case we have the following equation:

[tex]y + 2 =\frac{3}{2} (x + 4)[/tex]

We can rewrite it in the way

[tex]y = mx + b[/tex]

Where m is the slope and b represents the cut point.

So:

[tex]y =\frac{3}{2}(x + 4) -2[/tex]

[tex]y =\frac{3}{2}x +\frac{12}{2}-2[/tex]

[tex]y =\frac{3}{2}x + 6-2[/tex]

[tex]y =\frac{3}{2}x + 4[/tex]

[tex]m =\frac{3}{2}\\b = 4[/tex]

To graph, we look for two points through which the line passes:

Doing [tex]x = 0[/tex] we have:

[tex]y =\frac{3}{2}(0) +4[/tex]

[tex]y = 4[/tex]

So, we have the point: [tex](x1, y1) = (0,4)[/tex]

By doing[tex]y = 0[/tex] we have:

[tex]0 =\frac{3}{2}x + 4[/tex]

[tex]-4 =\frac{3}{2}x[/tex]

[tex]-8 = 3x[/tex]

[tex]x =-\frac{8}{3}[/tex]

So, we have the point: [tex](x2, y2) = (-\frac{8}{3},0)[/tex]

We locate [tex](x1, y1) = (0,4)[/tex] and [tex](x2, y2) = (-\frac{8}{3},0)[/tex] in a coordinate plane and the graph is attached.

Answer:

See attached image

Ver imagen carlosego