Respuesta :
Equation simplifies to y=3/2x+4, so y-int=4 and slope=3/2 (up 3/right 2)
3 plots --> (-2, 1), (0, 4), (3, 6)
For this case we have the following equation:
[tex]y + 2 =\frac{3}{2} (x + 4)[/tex]
We can rewrite it in the way
[tex]y = mx + b[/tex]
Where m is the slope and b represents the cut point.
So:
[tex]y =\frac{3}{2}(x + 4) -2[/tex]
[tex]y =\frac{3}{2}x +\frac{12}{2}-2[/tex]
[tex]y =\frac{3}{2}x + 6-2[/tex]
[tex]y =\frac{3}{2}x + 4[/tex]
[tex]m =\frac{3}{2}\\b = 4[/tex]
To graph, we look for two points through which the line passes:
Doing [tex]x = 0[/tex] we have:
[tex]y =\frac{3}{2}(0) +4[/tex]
[tex]y = 4[/tex]
So, we have the point: [tex](x1, y1) = (0,4)[/tex]
By doing[tex]y = 0[/tex] we have:
[tex]0 =\frac{3}{2}x + 4[/tex]
[tex]-4 =\frac{3}{2}x[/tex]
[tex]-8 = 3x[/tex]
[tex]x =-\frac{8}{3}[/tex]
So, we have the point: [tex](x2, y2) = (-\frac{8}{3},0)[/tex]
We locate [tex](x1, y1) = (0,4)[/tex] and [tex](x2, y2) = (-\frac{8}{3},0)[/tex] in a coordinate plane and the graph is attached.
Answer:
See attached image
