Respuesta :
Answer:
Angle Q = 31°
Angle R = 118°
Angle S = 31°
Explanation:
If QR is congruent to RS, from figure given we have angle Q = angle S.
Angle Q = 8x -17
Angle R = 19x + 4
Angle S = 5x + 1
We have,
8x -17 = 5x + 1
3x = 18
x = 6
So,
Angle Q = 8*6 -17 = 31°
Angle R = 19*6 + 4 = 118°
Angle S = 5*6 + 1 = 31°

Answer:
x=6
[tex]\angle Q=\angle S=31^{\circ}[/tex]
[tex]\angle R=118^{\circ}[/tex]
Step-by-step explanation:
We are given that in triangle QRS
[tex]\angle Q=8x-17[/tex]
[tex]\angle R=19x+4[/tex]
[tex]\angle S=5x+1[/tex]
[tex]QR\cong RS[/tex]
We have to find the value of x and the measure of each angle
We know that congruent sides make congruent angles
Therefore, [tex]\angle Q=\angle S[/tex]
[tex]8x-17=5x+1[/tex]
[tex]8x-5x=1+17[/tex]
[tex]3x=18[/tex]
[tex]x=\frac{18}{3}=6[/tex]
Substitute the value of x
[tex]\angle Q=8(6)-17=31^{\circ}[/tex]
[tex]\angle R=19(6)+4=118^{\circ}[/tex]
[tex]\angle S=5(6)+1=31^{\circ}[/tex]