Given equation:
[tex](3x-4i)(7x-8)(3x+4i)=0[/tex]
i.e., [tex]3x-4i=0[/tex] and [tex]7x-8=0[/tex] and [tex]3x+4i=0[/tex]
i.e., [tex]3x=4i[/tex] and [tex]7x=8[/tex] and [tex]3x=-4i[/tex]
i.e., [tex]x=\frac{4i}{3}[/tex] and [tex]x=\frac{8}{7}[/tex] and [tex]x=-\frac{4i}{3}[/tex]
Therefore, the given equation has a real root i.e., [tex]x=\frac{8}{7}[/tex]
and two complex conjugate roots i.e., [tex]x=\frac{4i}{3}[/tex] and [tex]x=-\frac{4i}{3}[/tex]
Hence, option C is correct.