Respuesta :

Answer:

= ㏒25

Step-by-step explanation:

log25x³ + 3log1/x

According to one of of the laws of logarithm which states : b log a = log a^b

So, 3 log 1/x = log (1/x)³

Another law states that : log a + log b = log a * b

So, log 25x³ +  log (1/x)³ = log (25x³) * (1/x)³

log (25x³)/x³

= log 25


Answer:

The simplified form is [tex]\log 25[/tex]

Step-by-step explanation:

We need to simplify the given expression

Given:- [tex]log(25x^{3}+3log(\frac{1}{x})[/tex]

According to laws of logarithm : [tex]b \log a = \log a^{b}[/tex]

So, [tex]3 \log (\frac{1}{x}) = \log (\frac{1}{x^{3}})[/tex]

According to laws of logarithm : [tex]\log a + \log b = \log a\times b[/tex]

So, [tex]\log 25x^{3} + \log (\frac{1}{x})^{3} = \log 25x^{3}\times (\frac{1}{x^{3}})[/tex]

[tex]=\log (\frac{25x^{3}}{x^{3}})}[/tex]

[tex]=\log 25[/tex]

Therefore, the simplified form is [tex]\log 25[/tex]