Respuesta :

Answer: 20

Step-by-step explanation:

  • Step 1: Find the vertices (intersections) of the constraints by either graphing or solving the system of equations. I graphed them and found two of the vertices: (0, 1) and (4,0) but needed to solve the system to find the third vertex (point of intersection).

-x + 3 = [tex]\frac{1}{3}x[/tex] + 1

+x   -1     +x  -1

      2 = [tex]\frac{4}{3}x[/tex]

  (3)2 = [tex](3)\frac{4}{3}x[/tex]

      6 = 4x

   ÷4   ÷4

     [tex]\frac{3}{2}[/tex] =  x

y = [tex]\frac{1}{3}x[/tex] + 1

  = [tex]\frac{1}{3}(\frac{3}{2)}[/tex] + 1

  =  [tex]\frac{1}{2}[/tex] + 1

   = [tex]\frac{3}{2}x[/tex]

Third vertex is at [tex](\frac{3}{2},\frac{3}{2)}[/tex]

  • Step 2: Input the vertices into the objective function: C = 5x - 4y

(0, 1): C = 5(0) - 4(1)

            =   0   -  4

            =      -4

[tex](\frac{3}{2},\frac{3}{2)}[/tex]: C = 5[tex](\frac{3}{2})[/tex] - 4[tex](\frac{3}{2})[/tex]

            = [tex]\frac{15}{2}[/tex] - [tex]\frac{12}{2}[/tex]

            =      [tex]\frac{3}{2}[/tex]

            =      1.5

(4, 0): C = 5(4) - 4(0)

            =  20   -  0

            =      20

  • Step 3: Evaluate the answers above to find the maximum: 20