Respuesta :

x^2 = -72 so x is [tex]i*6\sqrt{2} or -i*6\sqrt{2}[/tex]

Answer:

[tex]x^2+72=(x-6i\sqrt{2})(x+6i\sqrt{2})[/tex]

Step-by-step explanation:

[tex]x^2+72[/tex]

To get the factors , first we solve the given expression for x

[tex]x^2+72=0[/tex]

Subtract 72 from both sides

[tex]x^2=-72[/tex]

Take square root on both sides

[tex]x=+-\sqrt{-72}[/tex]

square root (-1) is 'i'

[tex]x=+-i\sqrt{72}[/tex]

[tex]x=+-6i\sqrt{2}[/tex]

[tex]x=+6i\sqrt{2}[/tex] and [tex]x=-6i\sqrt{2}[/tex]

Write the x values in the parenthesis to get the factor form

When 'a' is a x value then (x-a) is a factor

[tex]x^2+72=(x-6i\sqrt{2})(x+6i\sqrt{2})[/tex]