Respuesta :

Answer: [tex]\frac{23\pi} {12}[/tex], [tex]\frac{-25\pi} {12}[/tex]

Step-by-step explanation:

2π = [tex]\frac{24\pi} {12}[/tex]

positive: [tex]\frac{-\pi} {12} + \frac{24\pi} {12}[/tex] = [tex]\frac{23\pi} {12}[/tex]

negative: [tex]\frac{-\pi} {12} - \frac{24\pi} {12}[/tex] = [tex]\frac{-25\pi} {12}[/tex]

*********************************************************************************

Answer: A

Step-by-step explanation:

Quadrant I: 0 - [tex]\frac{\pi} {2}[/tex]

                = 0 - [tex]\frac{2\pi} {4}[/tex]

Quadrant II: [tex]\frac{\pi} {2}[/tex] - [tex]{\pi}[/tex]

                = [tex]\frac{2\pi} {4}[/tex] - [tex]\frac{4\pi} {4}[/tex]

Quadrant III: [tex]{\pi}[/tex] - [tex]\frac{3\pi} {2}[/tex]

                = [tex]\frac{4\pi} {4}[/tex] - [tex]\frac{6\pi} {4}[/tex]

Quadrant IV: [tex]\frac{3\pi} {2}[/tex] - [tex]2\pi[/tex]

                = [tex]\frac{6\pi} {4}[/tex] - [tex]\frac{8\pi} {4}[/tex]

[tex]\frac{9\pi} {4}[/tex] - [tex]\frac{8\pi} {4}[/tex] = [tex]\frac{\pi} {4}[/tex] which is in Quadrant I after 1 rotation.

*********************************************************************************

Answer: 118.96 ft

Step-by-step explanation:

[tex]\frac{180}{\pi} = \frac{20}{\theta}[/tex]

180(θ) = 20π

      θ = [tex]\frac{20\pi} {180}[/tex]

      θ = [tex]\frac{\pi} {9}[/tex]

A = [tex]\frac{1}{2}[/tex]r²θ

2470 = [tex]\frac{1}{2}[/tex]r²[tex](\frac{\pi} {9})[/tex]

[tex]\frac{2470(2)(9)}{\pi}[/tex] = r²

14,152 = r²

118.96 = r

*********************************************************************************

Answer: [tex]\frac{13\pi}{36}[/tex]

Step-by-step explanation:

[tex]\frac{\pi }{180} = \frac{\theta}{65}[/tex]

[tex]\frac{65\pi}{180}[/tex] = θ

[tex]\frac{13\pi}{36}[/tex] = θ