Answer:
Proportion states that the two fractions or ratios are equal
Given the equation: [tex]\frac{1.5}{4x+1} = \frac{0.4}{x+4}[/tex]
By cross multiply we get;
[tex]1.5(x+4) = 0.4(4x+1)[/tex]
Using distributive property; [tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]
[tex]1.5x + 6= 1.6x + 0.4[/tex]
Subtract 0.4 from both sides we get;
[tex]1.5x +5.6= 1.6x[/tex]
Subtract 1.5x from both sides we get;
[tex]5.6= 0.1x[/tex]
Divide both sides by 0.1 we get;
[tex]x = \frac{5.6}{0.1}[/tex]
Simplify:
x = 56
Therefore, the value of x that satisfy the equation [tex]\frac{1.5}{4x+1} = \frac{0.4}{x+4}[/tex] is, 56