Respuesta :

Answer:

Proportion states that the two fractions or ratios are equal

Given the equation:  [tex]\frac{1.5}{4x+1} = \frac{0.4}{x+4}[/tex]

By cross multiply we get;

[tex]1.5(x+4) = 0.4(4x+1)[/tex]

Using distributive property; [tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]

[tex]1.5x + 6= 1.6x + 0.4[/tex]

Subtract 0.4 from both sides we get;

[tex]1.5x +5.6= 1.6x[/tex]

Subtract 1.5x from both sides we get;

[tex]5.6= 0.1x[/tex]

Divide both sides by 0.1 we get;

[tex]x = \frac{5.6}{0.1}[/tex]

Simplify:

x = 56

Therefore, the value of x that satisfy the equation [tex]\frac{1.5}{4x+1} = \frac{0.4}{x+4}[/tex] is, 56