Answer:
[tex]\frac{x}{4}[/tex]
Step-by-step explanation:
The given function is
f(x) = 4x
As we know
f(x) = y, which implies x= [tex]f^{-1} (y)[/tex]
Therefore,
y = 4x
x = [tex]\frac{y}{4}[/tex]
as x= [tex]f^{-1} (y)[/tex]
So,
[tex]f^{-1} (y) = \frac{y}{4}[/tex]
replacing y by x in the above expression
[tex]f^{-1} (x) = \frac{x}{4}[/tex]
So our inverse function is [tex]\frac{x}{4}[/tex]