the logistic growth model...represents the number of families that own a home in a certain small (but growing) ciry t years after 1980. in what year did 2,335 families own a home?

Answer: 1982
Explanation:
H(t) = [tex]\frac{7000}{1 + 6e^{-0.55t}}[/tex]
2335 = [tex]\frac{7000}{1 + 6e^{-0.55t}}[/tex]
2335[tex](1 + 6e^{-0.55t})[/tex] = 7000
[tex]1 + 6e^{-0.55t}[/tex] = [tex]\frac{7000}{2335}[/tex]
[tex]6e^{-0.55t}[/tex] = [tex]\frac{7000}{2335}-1[/tex]
[tex]6e^{-0.55t}[/tex] = [tex]\frac{7000}{2335}-\frac{2335}{2335}[/tex]
[tex]6e^{-0.55t}[/tex] = [tex]\frac{4665}{2335}[/tex]
[tex]e^{-0.55t}[/tex] = [tex]\frac{4665}{2335(6)}[/tex]
[tex]e^{-0.55t}[/tex] = [tex]\frac{1}{2}[/tex]
[tex]lne^{-0.55t}[/tex] = [tex]ln\frac{1}{2}[/tex]
-0.55t = ln[tex]\frac{1}{2}[/tex]
t = [tex]\frac{ln\frac{1}{2}}{-0.55}[/tex]
t = 2
Year: 1980 + t = 1980 + 2 = 1982