Dejamos caer un objeto desde lo alto de una torre y medimos el tiempo que tarda en llegar al suelo , que resulta ser de 2,4 s ( segundos).calcula la altura de la torre.


El movimiento vertical de los cuerpos .

Respuesta :

Answer:

Usando movimiento vertical de los cuerpos, la altura de la torre es:

h = 28,224 m

Step-by-step explanation:

Si dejamos caer el objeto, su velocidad inicial es cero: Vo=0 m/s

Tiempo que tarda en llegar al suelo: t=2,4 s

Altura de la torre: h=?

La altura de la torre es la distancia que recorre el objeto desde que se deja caer hasta que llega al suelo, entonces podemos usar la formula de distancia:

h = d = Vo t +/- a t^2/2

La aceleracion del cuerpo es la que ejerce la gravedad porque es caida libre,  y es positiva porque el cuerpo va en la misma direccion que la aceleracion de la gravedad (hacia abajo):

h = Vo t + g t^2/2

Tomando la aceleracion de la gravedad como:

g=9,8 m/s^2

Y reemplazando los valores conocidos en la formula:

h = (0 m/s) (2,4 s) + (9,8 m/s^2) (2,4 s)^2 / 2

h= 0 m + (9,8 m/s^2) (5,76 s^2) / 2

h = 56,448 m / 2

h= 28,224 m

La altura de la torre es 28,224 m

The height of the tower is [tex]\boxed{28.224{\text{ m}}}.[/tex]

Further explanation:

The second equation of the motion can be expressed as follows,

[tex]\boxed{H = ut + \frac{1}{2}g{t^2}}[/tex]

Here, [tex]u[/tex] represents the initial velocity, [tex]t[/tex] represents the time, [tex]H[/tex] represents the vertical distance and [tex]g[/tex] represents the acceleration due to gravity.

Given:

The time taken by the object to reach the ground is [tex]2.4{\text{ seconds}}.[/tex]

Explanation:

The object is dropped from the tower. Therefore, initial velocity is zero.

[tex]u = 0{\text{ m/s}}[/tex]

The value of acceleration due to gravity is [tex]9.8{\text{ m/}}{{\text{s}}^2}.[/tex]

The time taken by the object to reach the ground is [tex]2.4{\text{ seconds}}.[/tex]

The vertical distance or height of the tower can be obtained as follows,

[tex]\begin{aligned}H&= ut+\frac{1}{2}g{t^2}\\&=0\times 2.4 + \frac{1}{2} \times 9.8 \times {2.4^2}\\&= 0 + 4.9 \times 5.76\\&= 28.224{\text{ m}}\\\end{aligned}[/tex]

The height of the tower is [tex]\boxed{28.224{\text{ m}}}.[/tex]

Learn more:

1. Learn more about inverse of the functionhttps://brainly.com/question/1632445.

2. Learn more about equation of circle brainly.com/question/1506955.

3. Learn more about range and domain of the function https://brainly.com/question/3412497

Answer details:

Grade: High School

Subject: Mathematics

Chapter: Motion

Keywords: average rate of change, drop an object, tower, top of a tower, the time, reach the ground, height of tower, ground, time, 2.4 seconds.