Respuesta :
Answer:
- x = 5/6 in ≈ 0.83 in
- v = 125/108 in³ ≈ 1.16 in³
Explanation:
The width of the cardboard (in inches) will be 4x, and its length will be (5-4x) so the perimeter adds up to 10 in. Then the volume is the product of the area of the open ends (x²) and the length (5-4x).
The graphing calculator shows that volume is maximized when the value of x is 0.833, or 5/6 inch. The corresponding length is 5-4x = 5/3 inch, so the volume is ...
... v = (5/6)²×(5/3) = 125/108 . . . . in³
The corresponding decimal values of x and volume are ...
... x ≈ 0.83 in
... v ≈ 1.16 in³

The volume of a shape is the amount of space in it.
- The value of x that maximizes the volume is: 0.83
- The maximum volume is 1.16
The given parameter is:
[tex]\mathbf{Perimeter = 10}[/tex]
Let the height of the cardboard be h.
So, the perimeter of the cardboard (see attachment) is:
[tex]\mathbf{Perimeter = x + x + x + x+x + x + x + x + h + h}[/tex]
[tex]\mathbf{Perimeter = 8x + 2h}[/tex]
Substitute [tex]\mathbf{Perimeter = 10}[/tex]
[tex]\mathbf{8x + 2h = 10}[/tex]
Divide through by 2
[tex]\mathbf{4x + h = 5}[/tex]
Make h the subject
[tex]\mathbf{h = 5 -4x}[/tex]
The volume of the cardboard is then calculated as:
[tex]\mathbf{V = x^2h}[/tex]
Substitute [tex]\mathbf{h = 5 -4x}[/tex]
[tex]\mathbf{V = x^2(5 - 4x)}[/tex]
Expand
[tex]\mathbf{V = 5x^2- 4x^3}[/tex]
Differentiate
[tex]\mathbf{V' = 10x- 12x^2}[/tex]
Set to 0
[tex]\mathbf{10x- 12x^2 = 0}[/tex]
Rewrite as:
[tex]\mathbf{- 12x^2 = -10x}[/tex]
Divide through by -x
[tex]\mathbf{12x = 10}[/tex]
Divide through by 12
[tex]\mathbf{x = \frac{10}{12}}[/tex]
[tex]\mathbf{x = \frac{5}{6}}[/tex]
[tex]\mathbf{x = 0.83}[/tex]
Recall that:
[tex]\mathbf{V = x^2(5 - 4x)}[/tex]
So, we have:
[tex]\mathbf{V = (\frac 56)^2 \times (5 - 4 \times \frac 56)}[/tex]
[tex]\mathbf{V = \frac{25}{36} \times (5 - \frac{10}{3})}[/tex]
Take LCM
[tex]\mathbf{V = \frac{25}{36} \times \frac{15 - 10}{3}}[/tex]
[tex]\mathbf{V = \frac{25}{36} \times \frac{5}{3}}[/tex]
[tex]\mathbf{V = \frac{125}{108}}[/tex]
[tex]\mathbf{V = 1.16}[/tex]
Hence,
- The value of x that maximizes the volume is: 0.83
- The maximum volume is 1.16
Read more about volumes at:
https://brainly.com/question/13338592
