A fan blade rotates with angular velocity given by ωz(t)= γ − β t2, where γ = 5.20 rad/s and β = 0.810 rad/s3 . calculate the angular acceleration as a function of time t in terms of β and γ.

Respuesta :

Answer : The angular acceleration is [tex]\alpha=-\beta t=-0.810\text{ t}[/tex]

Solution : Given,

[tex]\gamma=5.20rad/s[/tex]

[tex]\beta=0.810rad/s^3[/tex]

The given angular velocity equation is,

[tex]\omega_z(t)=\gamma-\beta t^2[/tex]

At t = 0,    [tex]\omega_z(0)=\gamma[/tex]

At t = t,      [tex]\omega_z(t)=\gamma-\beta t^2[/tex]

Angular acceleration : It is defined as the rate of change of angular velocity with respect to time.

Formula used for angular acceleration :

[tex]\alpha=\frac{\omega_z(t)-\omega_z(0)}{t}[/tex]

where,

[tex]\alpha[/tex] = angular acceleration

[tex]\omega_z(t)[/tex] = angular velocity at time 't'

[tex]\omega_z(0)[/tex] = angular velocity at time '0'

t = time

Now put all the given values in this formula, we get the angular acceleration.

[tex]\alpha=\frac{(\gamma)-(\gamma-\beta t^2)}{t}[/tex]

[tex]\alpha=-\beta t=-0.810\text{ t}[/tex]

Therefore, the angular acceleration is [tex]\alpha=-\beta t=-0.810\text{ t}[/tex]