Respuesta :

gmany

The point-slope form:

[tex]y-y_1=m(x-x_1)[/tex]

We have the point (1, 6) and the slope m = 7/3. Substitute:

[tex]y-6=\dfrac{7}{3}(x-1)[/tex]      use distributive property

[tex]y-6=\dfrac{7}{3}x-\dfrac{7}{3}[/tex]          add 6 to both sides

[tex]y=\dfrac{7}{3}x+\dfrac{11}{3}[/tex]        multiply both sides by 3

[tex]3y=7x+11[/tex]           subtract 7x from both sides

[tex]-7x+3y=11[/tex]         change the signs

[tex]7x-3y=-11[/tex]

Answer:

point-slope form: [tex]y-6=\dfrac{7}{3}(x-1)[/tex]

slope-intercept form: [tex]y=\dfrac{7}{3}x+\dfrac{11}{3}[/tex]

standard form: [tex]7x-3y=-11[/tex]