The point-slope form:
[tex]y-y_1=m(x-x_1)[/tex]
We have the point (1, 6) and the slope m = 7/3. Substitute:
[tex]y-6=\dfrac{7}{3}(x-1)[/tex] use distributive property
[tex]y-6=\dfrac{7}{3}x-\dfrac{7}{3}[/tex] add 6 to both sides
[tex]y=\dfrac{7}{3}x+\dfrac{11}{3}[/tex] multiply both sides by 3
[tex]3y=7x+11[/tex] subtract 7x from both sides
[tex]-7x+3y=11[/tex] change the signs
[tex]7x-3y=-11[/tex]
Answer:
point-slope form: [tex]y-6=\dfrac{7}{3}(x-1)[/tex]
slope-intercept form: [tex]y=\dfrac{7}{3}x+\dfrac{11}{3}[/tex]
standard form: [tex]7x-3y=-11[/tex]