Respuesta :

gmany

The slope-intercept form:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have:

[tex]f(2)=-2\to(2,\ -2)\\f(1)=1\to(1,\ 1)[/tex].

Substitute:

[tex]m=\dfrac{1-(-2)}{1-2}=\dfrac{3}{-1}=-3[/tex]

Therefore we have [tex]y=-3x+b[/tex].

Substitute the coordinates of the point (1, 1) to the equation:

[tex]1=-3(1)+b[/tex]

[tex]1=-3+b[/tex]      add 3 to both sides

[tex]4=b\to b=4[/tex]

Answer: y = -3x + 4


We have:

[tex]f(4)=1\to(4,\ 1)\\f(8)=4\to(8,\ 4)[/tex]

Substitute:

[tex]m=\dfrac{4-1}{8-4}=\dfrac{3}{4}[/tex]

Therefore we have [tex]y=\dfrac{3}{4}x+b[/tex].

Substitute the coordinates of the point (4, 1) to the equation:

[tex]1=\dfrac{3}{4}(4)+b[/tex]

[tex]1=3+b[/tex]      subtract 3 from both sides

[tex]-2=b\to b=-2[/tex]

Answer: [tex]y=\dfrac{3}{4}x-2[/tex]