Respuesta :

so, let's keep in mind that

[tex]\bf \begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}[/tex]

so let's make a quick table of those solutions, say A, B, C solutions with x,y,z liters of acid, with an acidity of 0.25, 0.40 and 0.60 respectively.


[tex]\bf \begin{array}{lcccl} &\stackrel{solution}{quantity}&\stackrel{\textit{\% of }}{amount}&\stackrel{\textit{liters of }}{amount}\\ \cline{2-4}&\\ A&x&0.25&0.25x\\ B&y&0.40&0.4y\\ C&z&0.60&0.6z\\ \cline{2-4}&\\ mixture&78&0.45&35.1 \end{array} \\\\\\ \begin{cases} x+y+z=78\\ 0.25x+0.4y+0.6z=35.1 \end{cases}[/tex]


we know she's using "z" liters and those are 3 times as much as "y" liters, so z = 3y.


[tex]\bf \begin{cases} x+y+3y=78\\ x+4y=78\\[-0.5em] \hrulefill\\ 0.25x+0.4y+0.6(3y)=35.1\\ 0.25x+0.4y=1.8y=35.1\\ 0.25x+2.2y=35.1 \end{cases}\implies \begin{cases} x+4y=78\\\\ 0.25x+2.2y=35.1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ x+4y=78\implies \boxed{x}=78-4y \\\\\\ \stackrel{\textit{using substitution on the 2nd equation}}{0.25\left( \boxed{78-4y} \right)+2.2y=35.1}\implies 19.5-y+2.2y=35.1[/tex]


[tex]\bf 1.2y=15.6\implies y=\cfrac{15.6}{1.2}\implies \blacktriangleright y=13 \blacktriangleleft \\\\\\ x=78-4y\implies x=78-4(13)\implies \blacktriangleright x=26 \blacktriangleleft \\\\\\ z=3y\implies z=3(13)\implies \blacktriangleright z=39 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{25\%}{26}\qquad \stackrel{40\%}{13}\qquad \stackrel{60\%}{39}~\hfill[/tex]