Determine whether or not F is a conservative vector field. If it is, find a function f such that F = -f. If it is not, enter NONE. F(x, y) = (2x - 4y) i + (-4x + 10y - 5) j
f(x, y) = ___-______+ k

Respuesta :

We need to have

[tex]\dfrac{\partial f}{\partial x}=2x-4y[/tex]

[tex]\dfrac{\partial f}{\partial y}=-4x+10y-5[/tex]

Integrate the first PDE with respect to [tex]x[/tex]:

[tex]\displaystyle\int\frac{\partial f}{\partial x}\,\mathrm dx=\int(2x-4y)\,\mathrm dx\implies f(x,y)=x^2-4xy+g(y)[/tex]

Differentiate with respect to [tex]y[/tex] to get

[tex]\dfrac{\partial f}{\partial y}=-4x+10y-5=-4x+\dfrac{\mathrm dg}{\mathrm dy}\implies\dfrac{\mathrm dg}{\mathrm dy}=10y-5[/tex]

[tex]\implies g(y)=5y^2-5y+C[/tex]

So we have

[tex]f(x,y)=x^2-4xy+5y^2-5y+C[/tex]

which means [tex]F[/tex] is indeed conservative.