Answer:
[tex]M_4=0.4722[/tex]
Step-by-step explanation:
we are given integral as
[tex]\int _0^{\frac{\pi }{2}}\left(2cos\left(5x\right)\right)dx\:[/tex]
n=4
Firstly, we will find delta x
[tex]\Delta x=\frac{\frac{\pi}{2}-0 }{4}[/tex]
[tex]\Delta x=\frac{\pi}{8}[/tex]
now, we can find mid-point sum
[tex]M_4=(0.3925) \times( f((0+0.3925)/2)) + f((0.3925+0.785)/2)) + f((0.785+1.1775)/2)) + f((1.1775+1.57)/2)) )[/tex]
[tex]M_4=(0.3925) * ( 1.1119679802993 + -1.960985790784 + 0.3852980309352 + 1.6668002599015 )[/tex]
[tex]M_4=0.4722[/tex]