Respuesta :

gmany

[tex]Use:\\\\\sec A=\dfrac{1}{\cos A}\\\\\tan A=\dfrac{\sin A}{\cos A}\\\\\csc A=\dfrac{1}{\sin A}\\\\\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\\\\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\\---------------------------------\\\\\sec A+\tan A=\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}=\dfrac{1+\sin A}{\cos A}\\\\\sec A-\tan A=\dfrac{1-\sin A}{\cos A}\\\\\csc A-1=\dfrac{1}{\sin A}-\dfrac{\sin A}{\sin A}=\dfrac{1-\sin A}{\sin A}\\\\\csc A+1=\dfrac{1+\sin A}{\sin A}[/tex]


[tex]\dfrac{\sqrt{\sec A+\tan A}}{\sqrt{\sec A-\tan A}}\cdot\dfrac{\sqrt{\cos A-1}}{\sqrt{\cos A+1}}=1\\\\L_s=\sqrt{\dfrac{\sec A+\tan A}{\sec A-\tan A}\cdot\dfrac{\cos A-1}{\cos A+1}}=\sqrt{\dfrac{\frac{1+\sin A}{\cos A}}{\frac{1-\sin A}{\cos A}}\cdot\dfrac{\frac{1-\sin A}{\sin A}}{\frac{1+\sin A}{\sin A}}}\\\\=\sqrt{\dfrac{1+\sin A}{\cos A}\cdot\dfrac{\cos A}{1-\sin A}\cdot\dfrac{1-\sin A}{\sin A}\cdot\dfrac{\sin A}{1+\sin A}}\\\\\text{Everything are simplified}\\\\=\sqrt{1}=1=R_s[/tex]