Respuesta :
The point-slope form:
[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (-16, 8) and (4, -2). Substitute:
[tex]m=\dfrac{-2-8}{4-(-16)}=\dfrac{-10}{20}=-\dfrac{1}{2}\\\\y-(-2)=-\dfrac{1}{2}(x-4)\\\\\boxed{y+2=-\dfrac{1}{2}(x-4)}[/tex]
The slope of the line =rise / run
= (8- -2) / (-16-4)
= 10/ -20
= -1/2
the point-slope form is y - y1 = m(x - x1) so plugging in m = -1/2 and the point (4 , -2) we have:-
y + 2 = -1/2(x - 4) (answer)