If A is a quadrant 1 angle, such that sinA=2/5 and B is a quadrant 3 angle, such that tanB=1, find sin(A+B) and cos(A+B) and the quadrant in with A+B lies in. Find sin2A.

*Please Show Work*

Respuesta :

Answers: sin(A+B)=[tex]\frac{-2\sqrt{2}-\sqrt{42}}{10}[/tex], cos(A+B)=[tex]\frac{2\sqrt{2}-\sqrt{42}}{10}[/tex], A+B=Quadrant 3, sin(2A)=[tex]\frac{4\sqrt{21}}{25}[/tex]

NOTES:

sin A = [tex]\frac{2}{5}[/tex]      ⇒    cos A = [tex]\frac{\sqrt{21}}{5}[/tex]

since tan B = 1 and is in Quadrant 3, then

sin B = [tex]-\frac{\sqrt{2}}{2}[/tex]    and  cos B = [tex]-\frac{\sqrt{2}}{2}[/tex]

SIN (A + B):

sin (A + B) = (sin A * cos B) + (cos A * sin B)

                 = ([tex]\frac{2}{5}[/tex])([tex]-\frac{\sqrt{2}}{2}[/tex]) + ([tex]\frac{\sqrt{21}}{5}[/tex])([tex]-\frac{\sqrt{2}}{2}[/tex])

                  = [tex]-\frac{2\sqrt{2}}{10}[/tex] + [tex]-\frac{\sqrt{42}}{10}[/tex]

                  = [tex]\frac{-2\sqrt{2}-\sqrt{42}}{10}[/tex]

COS (A + B):

cos (A + B) = (cos A * cos B) - (sin A * sin B)

                  = ([tex]\frac{\sqrt{21}}{5}[/tex])([tex]-\frac{\sqrt{2}}{2}[/tex]) - ([tex]\frac{2}{5}[/tex])([tex]-\frac{\sqrt{2}}{2}[/tex])

                  = [tex]-\frac{\sqrt{42}}{10}[/tex] - [tex]-\frac{2\sqrt{2}}{10}[/tex]

                  = [tex]\frac{2\sqrt{2}-\sqrt{42}}{10}[/tex]

SIN 2A:

sin (A + A) = 2 (sin A * cos A)

                 = 2 ([tex]\frac{2}{5}[/tex])([tex]\frac{\sqrt{21}}{5}[/tex])

                 = [tex]\frac{4\sqrt{21}}{25}[/tex]

A + B:

sin A = [tex]\frac{2}{5}[/tex]

    A = sin⁻¹[tex](\frac{2}{5})[/tex]

    A = 23.57°

tan B = 1

      B = tan⁻¹(1)

      B = 45°  

         = 45° + 180° in Quadrant 3

         = 225°

A + B = 23.6° + 225°

         = 248.6°  which lies in Quadrant 3