Point A is located at ​(4, 8)​ and point B is located at ​(14, 10)​ . What point partitions the directed line segment ​ AB¯¯¯¯¯ ​ into a 1:3 ratio?
 (6 1/2, 8 1/2)
(11 1/2, 9 1/2)
 (6, 6)
 (9, 9)

Respuesta :

Answer:

A is the answer or (6 1/2, 8 1/2)  or (13/2, 17/2) or (6.5,8.5)

Step-by-step explanation:

Given : A line segment AB with

[tex]A= (x_1,y_1)=(4,8)[/tex] and [tex]B= (x_2,y_2)=(14,10)[/tex]

let C partitioned the line AB by 1:3  let m:n = 1:3

shown in the figure attached

Formula used:

[tex]C= (\frac{n x_1 + m x_2 }{m+n},\frac{n y_1+ m y_2 }{m+n})[/tex]

putting value in formula we get,

[tex]C= (\frac{(4) (3)+ (14)(1) }{1+3},\frac{(8)(3)+ (10)(1)}{1+3})[/tex]

[tex]C= (\frac{(13 }{2},\frac{17}{2})[/tex]

[tex]C= (6.5 ,8.5)[/tex]

[tex]C= ( 6 1/2,8 1/2)[/tex]

therefore, A is the answer

   

Ver imagen DodieZollner